10 Mayıs 2022 Salı

MAVİ GEZEGEN

  

Dünya; atmosferi ve okyanuslarıyla, kompleks biyosferiyle, uygun biçimde okside edilmiş kabuğuyla, zengin silisyum yataklarıyla, tortul veya katılaşım kayalarıyla, zengin buz yatakları, çölleri, ormanları, tundraları, otlak alanları, tatlı su gölleri, kömür ve petrol yatakları, yanardağları, hayvanları, bitkileri, manyetik alanı, okyanus dibi şekilleri ve hareketli mağmasıyla… hayranlık uyandıracak derecede kompleks bir sistemdir.

J. S. Lewis, Amerikalı jeolog

 

Eğer Güneş Sistemi içinde bir yolculuk yapacak olursanız, oldukça ilginç bir tablo ile karşılaşırsınız. Yolculuğa sistemin en dışından başladığınızı varsayalım. İlk karşılaşacağınız gezegen Pluton'dur. Bu küçük gök cismi, oldukça "soğuk" bir yerdir. Yaklaşık - 238°C kadar!.. Bu dondurucu soğukluk içinde gezegenin çok ince bir atmosferi vardır. Ancak atmosfer, sadece, eliptik bir yörüngeye sahip olan gezegenin Güneş'e yakın olduğu dönemlerde gaz halindedir. Diğer zamanlarda atmosfer bir buz kütlesi haline döşünür. Kısaca Pluton, ölü bir buz yığınıdır.

Güneş Sistemi'nin merkezine biraz daha ilerlediğinizde, Neptün'le karşılaşırsınız. Bu gezegen de oldukça "soğuk"tur: Yüzey sıcaklığı -218°C civarındadır. Hidrojen, helyum ve metan gazlarından oluşan atmosferi insan için zehirlidir. Dahası gezegenin yüzeyinde, hızları saatte 2000 km'ye varan korkunç fırtınalar eser.

Merkeze doğru biraz daha ilerleyince Uranüs'e varırsınız. Uranüs yapısında yüksek oranda kaya ve buz bulunduran bir "gaz gezegen"dir. Atmosfer sıcaklığı -214°C civarındadır. Hidrojen, helyum ve metan içeren atmosfer yaşama kesinlikle uygun değildir.

Yolculuğu devam ettiğinizde Satürn'e varırsınız. Güneş Sistemi'nin bu ikinci büyük gezegeni, etrafındaki halkalarla tanınır. Bu halkalar gaz, buz ve kaya parçalarından oluşmaktadır. Asıl ilginç olan Satürn'ün yapısıdır. Gezegen tam anlamıyla bir gaz gezegendir; kütlesi % 75 oranında hidrojen ve % 25 oranında helyumdan oluşur. Yoğunluğu suyun yoğunluğundan bile düşüktür. Bu nedenle, eğer Satürn'e bir uzay gemisi indirmek isterseniz, bunu yüzebilir bir "şişme bot" olarak tasarlamanız gerekir. Isı yine korkunç derecede düşüktür:        -178°C.

Biraz daha ilerlediğinizde Güneş Sistemi'nin en büyük gezegeni olan Jüpiter'e varırsınız. Kütlesi Dünya'nın 318 katı olan Jüpiter de bir gaz gezegendir. Jüpiter gezegeninin atmosferi, yüzeyi ve iç yapısı arasında ayrım yapmak güç olduğundan "atmosfer sıcaklığı" gibi bir kavramı ifade etmek de aynı oranda zordur. Ancak, gezegenin atmosferi sayılabilecek üst kısımlarındaki ısı -143°C'dir. Jüpiter üzerinde bulunan büyük kırmızı renkli lekenin varlığı, Dünya'daki gözlemciler tarafından yaklaşık 300 yıldır bilinmektedir. Bu kırmızı lekenin, içine iki Dünya alacak kadar büyük olan bir fırtınadan başka birşey olmadığı ise çağımızda anlaşılmıştır. Kısaca Jüpiter, üzerinde hiç kara parçası bulunmayan, delici bir soğuğun hüküm sürdüğü, üzerinde yüzlerce yıl süren korkunç fırtınaların yaşandığı, manyetik alanı ile her canlıyı anında öldürecek korkunç, ürpertici bir gezegendir.

Jüpiter'den sonra Mars gelir. Mars'ın atmosferi yoğun karbondioksit içeren zehirli bir karışımdır. Gezegenin üzerinde hiç su yoktur. Yüzeyde büyük göktaşlarının çarpmasıyla meydana gelen dev kraterler dikkat çeker. Çok kuvvetli rüzgarlar ve aylarca süren kum fırtınaları hüküm sürer. Isı – 53°C civarındadır. Hakkında yapılan tüm spekülasyonlara rağmen, Mars ölü bir gezegendir.

Mars'tan sonra karşımıza çıkan mavi gezegeni şimdilik bir kenara bırakalım. Bir sonra varacağımız gezegen Venüs'tür. Venüs'te, daha önce rastladığımız dondurucu soğukların aksine, yakıcı bir sıcaklık hüküm sürer. Isı yüzeyde yaklaşık 450°C'ye kadar ulaşır. Bu, kurşunu bile eritmeye yetecek bir ısıdır. Venüs'ün bir diğer korkunç özelliği, yoğun bir karbondioksit tabakasından oluşan ağır atmosferidir. Atmosfer basıncı, yüzeyde 90 atmosferi bulur. Bu, Dünya'da denizin 1 km derinliğindeki basınca eş değerdir. Venüs'ün atmosferinde ayrıca kilometrelerce kalınlığa sahip sülfürik asit katmanları bulunmaktadır. Bu yüzden gezegene sürekli öldürücü asit yağmurları yağar. Cehennemi andıran böyle bir ortamda, hiçbir canlı yaşayamaz.

 Hala Güneş'e doğru ilerlemeye devam ederseniz, sistemin en başındaki Merkür gezegenine ulaşırsınız. Merkür'ün en ilginç özelliği, kendi etrafında olağanüstü derecede yavaş dönmesidir. Kendi etrafındaki dönüş hızı, neredeyse Güneş'in etrafında yaptığı dönüş kadar yavaştır. Öyle ki Merkür Güneş etrafında iki kez döndüğünde, kendi etrafında sadece üç kez dönmüş olur. Yani iki yılı, üç gününe eşittir. Gece ile gündüzün bu kadar uzun sürmesi, gezegenin bir yüzünü kızartırken, öteki yüzünü ise dondurur. Bu nedenle gece ile gündüz arasındaki ısı farkı yaklaşık 1000°C'yi bulmaktadır. Elbette böyle bir ortam, hiçbir canlıyı barındıramaz.

Kısacası, Güneş Sistemi'ndeki bilinen dokuz gezegenin sekizi (ve bunların burada değinmediğimiz 53 uydusu) içinde, yaşama uygun tek bir gök cismi yoktur. Her biri ölü ve sessiz birer madde yığınıdır.

 

 

 

Dünya'nın Isısı

 

Dünya'nın yaşam için en gerekli şartları, ilk bakışta, ısısı ve atmosferidir. Mavi gezegen, canlıların, özellikle de bizim gibi son derece kompleks canlı varlıkların yaşayabileceği bir ısı değerine ve soluyabileceği bir atmosfere sahiptir. Ancak bu iki etken de, birbirinden son derece farklı faktörlerin her birinin ideal değerlerde belirlenmesiyle gerçekleşmiştir.

Bunlardan birisi, Dünya'nın Güneş'e olan uzaklığıdır. Elbette ki Dünya Güneş'e Venüs kadar yakın ya da Jüpiter kadar uzak olsaydı, yaşama imkan verecek bir ısı değerine sahip olamazdı. Karbon bazlı organik moleküller, az önce belirttiğimiz gibi, 120°C ile -20°C arasında değişen bir ısı aralığında oluşabilirler. Güneş Sistemi'nde bu ısı değerine sahip olan yegane gezegen ise Dünya'dır.

Tüm evren düşünüldüğünde ise, hayat için gerekli olan bu ısı aralığının, gerçekte elde edilmesi çok zor bir aralık olduğunu görürüz. Çünkü evrenin içindeki ısılar, en sıcak yıldızların içindeki milyarlarca derecelik korkunç sıcaklıklardan, "mutlak sıfır" noktası olan – 273.15°C'ye kadar değişebilmektedir. Bu dev ısı yelpazesi içinde karbon-temelli bir hayata izin veren ısı aralığı, çok dar bir aralıktır. Ama Dünya, tam bu ısı aralığına sahiptir.

Amerikalı jeologlar Frank Press ve Raymond Siever de, Dünya yüzeyinin ısısına dikkat çekerler. Belirttiklerine göre "yaşam sadece çok sınırlı bir ısı aralığında mümkündür... ve bu ısı aralığı Güneş'in ısısı ile mutlak sıfır arasındaki muhtemel ısıların yaklaşık % 1'lik bir bölümünü oluşturmaktadır. Dünya'nın ısısı, tam bu dar aralıktadır."

Bu ısı aralığının korunması, elbette Güneş ile Dünya arasındaki mesafe kadar, Güneş'in yaydığı ısı enerjisi ile de yakından ilişkilidir. Hesaplara göre Dünya'ya ulaşan Güneş enerjisindeki %10'luk bir azalma yeryüzünün metrelerce kalınlıkta bir buzul tabakası ile örtülmesiyle sonuçlanacaktır. Enerjinin biraz artması halinde ise tüm canlılar kavrularak öleceklerdir.

Dünya'nın ideal olan ısısının, gezegen içinde dengeli olarak dağıtımı da son derece önemlidir. Nitekim bu dengenin sağlanması için çok özel bazı tedbirler alınmıştır.

Örneğin, Dünya'nın ekseninin 23°27´lık eğimi, kutuplarla ekvator arasındaki atmosferin oluşmasında engel oluşturabilecek aşırı sıcaklığı önler. Eğer bu eğim olmasaydı, kutup bölgeleriyle ekvator arasındaki sıcaklık farkı çok daha artacak ve yaşanabilir bir atmosferin var olması imkansızlaşacaktı.

Dünya'nın kendi etrafındaki yüksek dönüş hızı da ısının dengeli dağılımına yardımcı olur. Dünya sadece 24 saatlik bir süre içinde kendi etrafını dolaşır ve bu sayede geceler ve gündüzler kısa sürer. Kısa sürdükleri için de gece ile gündüz arasındaki ısı farkı çok azdır. Bu dengenin önemi, bir günü bir yılından daha uzun süren ve bu yüzden gece-gündüz arasındaki ısı farkı 1000°C'yi bulan Merkür ile karşılaştırıldığında görülebilir.

Yeryüzünün şekilleri de ısının dengeli dağılımına yardımcı olur. Dünya'nın ekvatoru ile kutupları arasında yaklaşık 100°C'lik bir ısı farkı vardır. Eğer böyle bir ısı farkı fazla engebesi olmayan bir yüzeyde gerçekleşmiş olsaydı, hızı saatte 1000 km'ye varan fırtınalar Dünya'yı allak bullak ederdi. Oysa ki yeryüzü, ısı farkından dolayı ortaya çıkması muhtemel kuvvetli hava akımlarını bloke edecek engebelerle donatılmıştır. Bu engebeler, yani sıradağlar, Çin'de Himalayalar'la başlar, Anadolu'da Toroslarla devam eder ve Avrupa'da Alplere kadar sıradağlar halinde uzanarak batıda Atlas Okyanusu, doğuda Büyük Okyanus'la birleşir. Okyanuslarda ise ekvatorda oluşan fazla ısı, sıvıların ısı farkını dereceli bir şekilde dengelemesi sayesinde kuzeye ve güneye doğru aktarılır.

Bu arada Dünya'nın atmosferinde ısıyı sürekli dengeleyen birtakım otomatik sistemler de vardır. Örneğin bir bölge çok fazla ısındığında su buharlaşması artar ve bulutlar çoğalır. Bu bulutlar ise Güneş'ten gelen ışınların bir kısmını geri yansıtarak aşağıdaki havanın ve yüzeyin daha fazla ısınmasını engeller.

 

 

Yerkürenin Kütlesi ve Manyetik Alanı

 

Dünya'nın Güneş'e olan mesafesi, dönüş hızı ya da yeryüzü şekilleri kadar, büyüklüğü de önemlidir. Dünyamız'ı, Dünya'nın kütlesinin sadece % 8'i kadar bir kütleye sahip olan Merkür'le, ya da Dünya'dan 318 kat daha büyük bir kütleye sahip olan Jüpiter'le karşılaştırdığımızda, gezegenlerin çok farklı büyüklüklere sahip olabileceklerini görürüz. Peki acaba bu kadar farklı büyüklükteki gezegenler içinde, Dünyamız'ın büyüklüğü tesadüfen mi belirlenmiştir?

Hayır! Yerkürenin özelliklerini incelediğimizde, üzerinde yaşadığımız bu gök cisminin tam olması gerektiği büyüklükte olduğunu görürüz. Amerikalı jeologlar Press ve Siever, Dünya'nın bu yönden "uygunluğu" hakkında şu bilgileri verirler:

Dünya'nın büyüklüğü tam olması gerektiği kadardır. Daha küçük olsa yerçekimi çok zayıflayacak ve atmosferi Dünya'nın etrafında tutamayacaktı, daha büyük olsaydı bu kez de yerçekimi çok artacak ve bazı zehirli gazları da tutarak atmosferi öldürücü hale getirecekti...

Dünya'nın kütlesinin yanısıra, iç yapısı da yaşam için özel bir tasarıma sahiptir. Bu iç yapıdaki tabakalar sayesinde, Dünya bir manyetik alana sahiptir ve bu manyetik alan yaşamın korunması için çok önemlidir. Press ve Siever bu konuyu şöyle açıklarlar:

Dünya'nın çekirdeği ise çok büyük bir hassasiyetle dengelenmiş ve radyoaktivite tarafından beslenen bir ısı motorudur... Eğer bu motor daha yavaş çalışsaydı, kıtalar şu anki yapılarına ulaşamazlardı... Demir hiçbir zaman erimez ve merkezdeki sıvı çekirdeğe inmezdi ve böylece Dünya'nın manyetik alanı hiçbir zaman oluşmazdı... Eğer Dünya'nın daha fazla radyoaktif yakıtı olsaydı ve dolayısıyla daha hızlı bir ısı motoru bulunsaydı, volkanik bulutlar Güneş'i kapatacak kadar kalın olur, atmosfer aşırı derecede yoğun hale gelir ve Dünya yüzeyi de hemen her gün volkanik patlamalar ve depremlerle sarsılırdı.

Press ve Siever'ın sözünü ettikleri manyetik alan, yaşamımız için büyük öneme sahiptir. Bu manyetik alan, yukarıda belirtildiği gibi, yerkürenin çekirdeğinin yapısından kaynaklanır. Çekirdek, demir ve nikel gibi manyetik özelliği olan ağır elementleri içerir. İç çekirdek katı, dış çekirdek ise sıvı haldedir. Çekirdeğin bu iki katmanı birbiri etrafında hareket eder. Bu hareket ağır metaller üzerinde bir çeşit mıknatıslanma etkisi yaparak bir manyetik alan oluşturur. Atmosferin çok daha dışına kadar uzanan bu alan sayesinde Dünya, uzaydan gelebilecek olan tehlikelere karşı korunmuş olur. Güneş dışındaki yıldızlardan kaynaklanan öldürücü kozmik ışınlar, Dünya'nın etrafındaki bu koruyucu kalkanı geçemezler. Özelikle de Dünya'nın on binlerce kilometre uzağında manyetik halkalar çizen Van Allen Kuşakları, Dünya'yı bu öldürücü enerjiden korur.

Söz konusu plazma bulutlarının, kimi zaman Hiroşima'ya atılan gibi 100 milyar atom bombasına eş değer olduğu hesaplanmıştır. Aynı şekilde kozmik ışınlar da çok şiddetli olabilirler. Ama Dünya'nın manyetik alanı, tüm bu öldürücü ışınların sadece % 0.1'ni geçirmekte ve kalan bu binde birlik ışınlar da atmosfer tarafından emilmektedir. Bu manyetik alanı üretmek için kullanılan elektrik enerjisi bir milyar amperlik bir akımdır ki, insanlığın tüm tarihi boyunca ürettiği elektrik enerjisinin toplamına yakındır.

 

Atmosferin Uygunluğu

 

Dünya, şimdiye kadar incelediğimiz gibi, hem yaşam için gerekli sıcaklığa, hem gerekli kütleye, hem de yaşamı koruyan özel kalkanlara sahiptir. Ama bunlar Dünya üzerinde canlılığın var olması için yeterli şartlar değildir. Çok önemli bir başka şart, atmosferin yapısıdır.

Bilimkurgu filmleri, önceki sayfalarda da değindiğimiz gibi, insanları kimi zaman yanlış yönlendirirler. Bunun bir örneği, bu filmlerde sık sık rastlanan "kolay atmosfer uygunluğu"dur. Uzay gemisiyle uzak bir gezegene yaklaşan insanlar, gezegene inmeden önce atmosferinin solunabilir olup olmadığına bakarlar. Genellikle de solunabilir bir atmosfer çıkar. Bu senaryolar, insanoğlunun kolaylıkla ve tesadüfen uygun atmosferler bulabileceği gibi bir izlenim vermektedir. Oysa eğer gerçekten uzay gemileri ile evrenin derinliklerinde gezinseydik, Dünya dışındaki bir başka gezegende solunabilir bir atmosfer bulmak, neredeyse imkansız olurdu. Çünkü Dünya'nın atmosferi, yaşam için gerekli son derece özel şartları biraraya getirerek tasarlanmış olağanüstü bir karışımdır.

Dünya atmosferi, % 77 azot, % 21 oksijen ve %1 oranında karbondioksit ve argon gibi diğer gazların karışımından oluşur. Öncelikle bu gazların en önemlisi ile, oksijenle başlayalım. Oksijen çok önemlidir, çünkü insan gibi kompleks bedenlere sahip canlıların enerji elde etmek için kullandıkları çoğu kimyasal reaksiyon oksijen sayesinde gerçekleşir. Karbon bileşikleri oksijenle reaksiyona girerler. Reaksiyon sonucunda su, karbondioksit ve enerji açığa çıkar. Hücrelerimizde kullandığımız ve ATP (adenosin trifosfat) adı verilen enerji paketçikleri, bu reaksiyonla ortaya çıkarlar. İşte biz de bu nedenle sürekli olarak oksijene ihtiyaç duyarız ve bu ihtiyacı karşılamak için solunum yaparız.

İşin ilginç yanı, soluduğumuz havadaki oksijen oranının, son derece hassas dengelerle tespit edilmiş oluşudur. Michael Denton, bu konuda şunları yazar:

 Atmosferimiz daha fazla oksijen içerebilir ve buna rağmen hayatı destekleyebilir miydi? Hayır! Oksijen çok reaktif bir elementtir. Şu anda atmosferde bulunan okijeninin oranı, yani yüzde 21, yaşamın güvenliği için aşılmaması gereken sınırların tam ideal noktasındadır. Yüzde 21'in üzerine artan her yüzde birlik oksijen oranı, bir yıldırımın orman yangını başlatma olasılığını % 70 artıracaktır.

İngiliz biyokimyacı James Lovelock ise aynı konu hakkında şöyle yazar:

Yüzde 25'lik bir oksijen oranının daha yukarısında, şu anda kullandığımız bitkisel besinlerin çok azı, tüm tropik ormanları ve arktik tundraları yok edecek olan dev yangınlardan korunabilirdi... Atmosferin şu anki oksijen oranı, tehlikenin ve yararın çok iyi bir biçimde dengelendiği bir rakamdadır.

Atmosferdeki oksijen oranının dengede kalması da, mükemmel bir "geri dönüşüm" sistemi sayesinde gerçekleşir. Hayvanlar devamlı olarak oksijen tüketirler ve kendileri için zehirli olan karbonioksiti üretirler. Bitkiler ise bu işlemin tam tersini gerçekleştirir, ve karbondioksiti hayat verici oksijene çevirerek canlılığın devamını sağlarlar. Her gün bitkiler tarafından milyarlarca ton oksijen bu şekilde üretilerek atmosfere salınır.

Bu iki canlı grubu, yani bitkiler ve hayvanlar, eğer aynı reaksiyonu gerçekleştirselerdi Dünya çok kısa sürede yaşanılmaz bir gezegene dönüşürdü. Örneğin hem hayvanlar hem de bitkiler oksijen üretselerdi, atmosfer kısa sürede "yanıcı" bir özellik kazanır ve en ufak bir kıvılcım dev yangınlar çıkarırdı. Sonunda da Dünya dev bir "tüp patlaması"yla yanarak kavrulurdu. Öte yandan eğer hem bitkiler hem de hayvanlar karbondioksit üretselerdi, bu kez atmosferdeki oksijen hızla tükenir ve bir süre sonra canlılar nefes almalarına rağmen "boğularak" toplu halde ölmeye başlarlardı.

Ancak canlılığın dengesi öylesine kusursuzca kurulmuştur ki, atmosferdeki oksijen oranı hep canlılık içinde en ideal olan oranda, Lovelock'ın ifadesiyle "tehlikenin ve yararın çok iyi bir biçimde dengelendiği bir rakamda" durmaktadır.

Atmosferin çok iyi bir biçimde dengelenmiş bir başka yönü ise, onu solumamızı sağlayan ideal yoğunluğudur.

 

 

Atmosfer ve Nefes

 

Hayatımızın her dakikasında nefes alırız. Sürekli olarak ciğerlerimize hava çeker ve hemen sonra da aynı havayı geri veririz. Bunu o kadar çok yaparız ki, "normal" bir işlem olduğunu düşünürüz. Oysa gerçekte nefes almak çok karmaşık bir iştir.

Vücut sistemimiz öyle bir biçimde ayarlanmıştır ki, nefes alırken bu işi düşünmemize gerek kalmaz. Yürürken, koşarken, kitap okurken hatta uyurken, vücudumuz sürekli olarak ne kadar nefes almamız gerektiğini hesaplar ve ciğerlerimizi ona göre çalıştırır. Nefes almaya bu kadar çok ihtiyaç duymamızın nedeni, vücudumuzda her saniye gerçekleşen milyarlarca ayrı işlemin, hep oksijen sayesinde gerçekleşen reaksiyonlardan enerji sağlamasıdır.

Şu anda bu yazıyı okuyabilmeniz, gözünüzün retina tabakasındaki milyonlarca hücrenin sürekli olarak oksijenle beslenmesi sayesinde mümkün olmaktadır. Eğer kanınızdaki oksijen oranı düşerse, "gözünüz kararır". Bunun gibi, vücuttaki tüm kasların, bu kasları oluşturan hücrelerin tümü, karbon bileşiklerini "yakarak" yani oksijenle reaksiyona sokarak enerji elde eder. Bu enerji elde edildiğinde ise ortaya vücuttan atılması gereken karbondioksit çıkar.

İşte bunun için nefes alırız. Havayı içimize çektiğimiz anda, akciğerlerimizde bulunan yaklaşık 300 milyon küçük odacığa oksijen dolar. Bu odacıkların duvarlarını kaplayan kılcal damarlar hemen bu oksijeni çekerler ve önce kalbe sonra da vücudun her tarafına taşırlar. Kılcal damarlar oksijeni içeri alırken, aynı anda da atık madde olan karbondioksiti bırakırlar. Yarım saniye sürmeyen bu işlem sayesinde, içimize çektiğimiz temiz (oksijenli) havayı, dışarıya kirli (karbondioksitli) olarak veririz.

Akciğerlerimizde neden 300 milyon odacık olduğunu düşünebilirsiniz. Bundaki amaç, ciğerin hava ile temas eden alanını maksimuma çıkarmaktır. Odacıklar sayesinde sıkıştırılmış olan bu alan gerçekte o kadar büyüktür ki, eğer bu alanı ciğerin içinden çıkarıp düz bir yüzeye yaysak, bir tenis kortu kadar yer kaplar.

Burada bir noktaya dikkat edelim: Akciğerlerin içindeki odacıkların ve dolayısıyla bu odacıklara giden kanalların bu kadar dar olması, oksijen solunumunu artırmak için yapılmış harika bir tasarımdır. Ama bu tasarım, bir başka şartın yerine gelmesine bağlıdır: Havanın yoğunluğunun, akışkanlığının ve basıncının, bu kadar dar kanallar içinde rahatlıkla hareket edebilecek değerlerde olmasına.

Havanın basıncı 760 mm Hg'dir. Yoğunluğu, deniz seviyesinde, litre başına bir gram civarındadır. Deniz yüzeyindeki akışkanlığı ise, suyun elli katı kadar fazladır. Birer önemsiz rakam sanabileceğimiz bu değerler, gerçekte bizim yaşamımız için çok kritiktirler. Çünkü, "hava soluyan canlıların var olabilmesi için, atmosferin genel karakteristik özellikleri—yoğunluğu, akışkanlığı, basıncı vs.—şu anda sahip oldukları değerlere çok çok benzer olmak zorundadır".

Nefes alırken ciğerlerimiz "hava direnci" denen bir güce karşı enerji kullanırlar. Hava direnci, havanın harekete karşı gösterdiği durgunluk eğilimidir. Ancak bu direnç, atmosferin özellikleri sayesinde çok zayıftır ve ciğerlerimiz kolaylıkla havayı içeri çekip dışarı itebilirler. Bu direncin biraz artması ise, ciğerlerimizin zorlanmaya başlamasına neden olacaktır. Buradaki mantık bir örnekle açıklanabilir: Bir enjektörün iğnesinden su çekmek kolaydır, ama aynı iğneyle bal çekmek çok daha zordur. Çünkü bal, sudan daha az akışkanlığa ve daha yüksek bir yoğunluğa sahiptir.

İşte eğer atmosferin yoğunluk, akışkanlık, basınç gibi değerleri biraz farklılaşsa, nefes almak bizim için bir enjektöre bal çekmek gibi zorlaşacaktır. Bu durum karşısında "o zaman enjektörün iğnesi kalınlaşabilir" diye düşünmek, yani akciğer kanallarının genişletilmesini önermek ise yanlıştır. Çünkü o zaman ciğerlerin hava ile temas eden alanı çok küçülmekte ve ciğerler vücut için gerekli oksijeni alabilecek yapıdan uzaklaşmaktadır. Yani havanın yoğunluk, akışkanlık, basınç gibi değerlerinin mutlaka belirli bir aralık içinde olması şarttır, ve bugün soluduğumuz havanın sahip olduğu değerler, tam da bu dar aralığın içindedir.

Michael Denton, bu konu hakkında şu yorumu yapar:

Eğer havanın yoğunluğu ya da durgunluğu biraz daha fazla olsaydı, hava direnci çok büyük oranlara çıkacaktı ve hava soluyan bir canlıya ihtiyaç duyduğu oksijen oranını sağlayacak bir solunum sistemi tasarlamak imkansız hale gelecekti... Muhtemel atmosfer basınçları ile muhtemel oksijen oranlarını karşılaştırarak "hayat için uygun" bir rakamsal değer aradığımızda, çok sınırlı bir aralıkla karşılaşırız. Hayat için gerekli olan çok fazla şartın hepsinin bu küçük aralıkta gerçekleşmesi—ve atmosferin de bu aralıkta olması—elbette ki çok olağanüstü bir uyumdur.

Atmosferin rakamsal değerleri, sadece bizim solunumumuz için değil, mavi gezegenin "mavi" olarak kalması için de önemlidir. Eğer atmosfer basıncı şu anki değerinden beşte bir kadar azalsa, denizlerdeki buharlaşma oranı çok fazla yükselecek ve atmosferde çok yüksek oranlara varacak olan su buharı tüm Dünya üzerinde bir "sera etkisi" oluşturarak gezegenin ısısını aşırı derecede yükseltecektir. Eğer atmosfer basıncı şu anki değerinden bir kat daha fazla olsa, bu kez de atmosferdeki su buharı oranı büyük ölçüde azalacak ve Dünya üzerindeki karaların tamamına yakını çölleşecektir.

 

Dengeler Listesi

 

 Buraya kadar değindiklerimiz, Dünya'daki yaşam için gerekli dengelerin sadece bir kısmıdır. Yerküreyi incelediğimizde, neredeyse bitmeyecekmiş gibi duran çok daha büyük "yaşam için gerekli dengeler" listesi oluşturabiliriz.  Örneğin Amerikalı astronom Hugh Ross, Dünya'nın yaşam için uygunluğuyla ilgili bazı maddeleri şöyle sıralamaktadır:

 

Yerçekimi;

-Eğer daha güçlü olsaydı: Dünya atmosferi çok fazla amonyak ve metan biriktirir, bu da yaşam için çok olumsuz olurdu.

-Eğer daha zayıf olsaydı: Dünya atmosferi çok fazla su kaybeder, canlılık mümkün olmazdı.

 

Güneş'e uzaklık;

-Eğer daha fazla olsaydı: Gezegen çok soğur, atmosferdeki su döngüsü olumsuz etkilenir, gezegen buzul çağına girerdi.

-Eğer daha yakın olsaydı: Gezegen kavrulur, atmosferdeki su döngüsü olumsuz etkilenir, yaşam imkansızlaşırdı.

 

Yer kabuğunun kalınlığı;

-Eğer daha kalın olsaydı: Atmosferden yerkabuğuna çok fazla miktarda oksijen transfer edilirdi.

-Eğer daha ince olsaydı: Hayatı imkansız kılacak kadar fazla sayıda volkanik hareket olurdu.

 

Dünya'nın Kendi Çevresindeki Dönme Hızı;

-Eğer daha yavaş olsaydı: Gece gündüz arası ısı farkları çok yüksek olurdu.

-Eğer daha hızlı olsaydı: Atmosfer rüzgarları çok çok büyük hızlara ulaşır, kasırgalar ve tufanlar hayatı imkansızlaştırırdı.

 

Ay ile Dünya Arasındaki Çekim Etkisi;

-Eğer daha fazla olsaydı: Ay'ın şiddetli çekiminin, atmosfer şartları, Dünya'nın kendi eksenindeki dönüş hızı ve okyanuslardaki gelgitler üzerinde çok sert etkileri olurdu.

-Eğer daha az olsaydı: Şiddetli iklim değişikliklerine neden olurdu.

 

Dünya'nın Manyetik Alanı;

-Eğer daha güçlü olsaydı: Çok sert elektromanyetik fırtınalar olurdu.

-Eğer daha zayıf olsaydı: Güneş Rüzgarı denilen ve Güneş'ten fırlatılan zararlı partiküllere karşı Dünya'nın koruması kalkardı. Her iki durumda da yaşam imkansız olurdu.

 

Albedo Etkisi (Yeryüzünden Yansıyan Güneş Işığının, Yeryüzüne Ulaşan Güneş Işığına Oranı)

-Eğer daha fazla olsaydı: Hızla buzul çağına girilirdi.

-Eğer daha az olsaydı: Sera etkisi aşırı ısınmaya neden olur, Dünya önce buzdağlarının erimesiyle sular altında kalır daha sonra kavrulurdu.

 

Atmosferdeki Oksijen ve Azot Oranı:

-Eğer daha fazla olsaydı: Yaşamsal fonksiyonlar olumsuz şekilde hızlanırdı.

-Eğer daha az olsaydı: Yaşamsal fonksiyonlar olumsuz şekilde yavaşlardı.

 

Atmosferdeki Karbondioksit ve Su Oranı:

-Eğer daha fazla olsaydı: Atmosfer çok fazla ısınırdı.

-Eğer daha az olsaydı: Atmosfer ısısı düşerdi.

 

Ozon Tabakasının Kalınlığı

-Eğer daha fazla olsaydı:Yeryüzü ısısı çok düşerdi.

-Eğer daha az olsaydı:Yeryüzü aşırı ısınır, Güneş'ten gelen zararlı ultraviole ışınlarına karşı bir koruma kalmazdı.

 

Sismik (Deprem) Hareketleri

-Eğer daha fazla olsaydı: Canlılar için sürekli bir yıkım olurdu.

-Eğer daha az olsaydı: Okyanus zeminindeki besinler suya karışmaz, okyanus ve deniz yaşamı dolayısıyla bütün Dünya canlıları olumsuz etkilenirdi.

 

Alıntıdır.

MANEVÎ ve MİLLÎ DEĞER İFADESİ OLARAK RENKLER

 Kara


Kara rengin de Türk mitolojisine dayanan anlamlar ifade ettiği ve fakat tarihî seyir içerisinde bu rengin olumludan olumsuza çok değişik anlamlarda kullanıldığı bilinmektedir. Ancak, muhakkak gibi görünen husus şudur ki, İslâmî dönemde Abbasî halifelerinden meşrûluk fermanı alan Türk hanedanlarına gelinceye kadar Kara’nın Türklerde (Gazneliler ile ilgili kayıtları istisna edecek olursak), hükümranlık rengi olarak yaygın bir şekilde kullanıldığına dair fazla bilgiye sahip değiliz.



Kara’nın Şaman Türkler açısından ifade ettiği anlamlar ile ilgili olarak, Abdülkadir İnan şu bilgileri veriyordu: “Altaylıların akidelerinde ruhlar aru (pâk, temiz, arı) veya kara (habis) zümrelerine ayrılırlar. Bunlara Tös de denir. Tös denilen bu ruhlardan Karatös grubuna yer altı tanrısı Erlik de dahildir. Altaylılar en ağır ve elemli felâketleri Erlik’in faaliyetiyle alâkadar bilirler. Erlik, yer altında kara çamurdan yapılmış sarayında oturur. Erlik, büyük kara ruh sayılır. O’nun kızlarını da “dokuzu da müsavi karalar” olarak adlandırırlar”. Yine, yukarıda Kazak-Kırgız Türklerinin hurafelerinde Albastı’nın iki çeşit olduğuna, birinin Kara albastı diğerinin de Sarı albastı olduğuna işaret edilmişti. Bu Kara veya Kara Albastı, ciddî ve ağırbaşlı bir ruh olarak da telâkkî edilirdi. Şamanist Türkler lohusa kadınları Kara albastı (karabastı-karakura)’dan korumak ve karayı defetmek için kara baksı çağırırlardı.





Diğer taraftan Türk mitolojisinde kara, umumiyetle toprak rengi olarak, yağız yer anlayışı ile birlikte kullanılmıştır. Her halde önce yağız yer kullanılmış, kara toprak sonradan söylenir olmuştur. Daha önce ifade edildiği üzere eski Türklerde halk tabakasına mensup olanlara da kara (karabudun -avam) denildiği gibi kara kul, karavaş veya karabaş deyimleri de “köle” anlamında kullanılmıştı.



Yine, işaret edildiği üzere kara renk, Türklerde herhalde binlerce yıldan beri kuzeyin sembolü olarak kullanılmıştır. Çünkü, çeşitli kavimler ile kültürler, kuzeyin karanlıklar ülkesi olduğu üzerinde birleşmişlerdir. Nitekim Müslümanlar da kuzeye “Diyâr-ı Zulmet” demişlerdir. Bundan dolayı Türkler, kuzeyle ilgili ne varsa onları, kara tanıtması ile tanıtmışlardır. Meselâ, Oğuz Destanı’nda, kuzeyde oturan İt-Barak adlı kavmin derileri de siyahtı. Kuzeyden esen rüzgârlar da “Kara yel” idi. Kara kış ise, çetin, zorlu, şiddetli kış anlamında olup, bu anlam Türkçede “kadır” kelimesi ile de adlandırılmıştır (kadır kış=kara kış). İşte, Kara kelimesinin hükümdar ve hanedan sıfatı olarak kullanılmasının (zorlu, güçlü, sert, çetin hükümdar) olduğu gibi “kadır” sıfatının da hükümdarlar için kullanılmasının kaynağı budur. Ayrıca, “kara yel” deyiminde de, soğukluk ve şiddetlilik anlamlarının ifade edilmek istendiği açıktır.





Diğer taraftan yas ve mezar bayrakları da Türk kavimlerinin inanışlarında büyük bir yer tutmaktadır. Bugünkü Doğu Türkistanda mezarlara bezden bir bayrak asılır. Altayların kuzeyindeki Şamanist Türkler ise, mezara bir paçavra bağlamakla yetinirler. Bizim “yatırlara bez bağlama” geleneğimiz de bu inancın her halde bize kadar gelen bir uzantısı olsa gerektir. Ölü veya yas evine, belki de birden fazla bayrak asılıyordu. Çünkü, Dede Korkut’ta yas evinden söz edilirken, “Karalı göklü otağ” (karalı yeşilli çadır, veya ev) deniliyordu. Ancak, bunların birer bayrak olup-olmadıklarını da kesin olarak bilemiyoruz. Yine “kara-gök” eşlemesi, Türk kozmogonisinin ana sembolü olan renklerdir. kara, yerin; gök (mavi) renk ise göğün sembolleridirler. Ancak, Dede Korkut’ta yas dolayısıyla ifade edilen “kara giyinip-gök sarınma” (kara giyinip yeşil sarınma) ile karalı-göklü yas çadırında söz konusu olan gök, yeşil renk olup, Türklerin tipik yas renklerinin, yani siyah ile yeşil’in birlikte kullanıldığının ifadeleridir. Karahanlılar devletinde vezirlerin siyah ipekten yapılmış çetr kullanmaları ve hil’atlerinin de muhtemelen siyah olması, büyük ihtimalle onların kara budundan (halktan) olmalarının bir işareti idi.



İslâmi döneme gelince, Hazret-i Peygamber’in üç sancağından siyah olanını Abbas’a vermesinden dolayı bu renk Abbasîlerin şiarı olmuştu. Dolayısıyla Abbasî halifelerinden meşrûluk fermanı alan Türk sülâlelerinde de, hâkimiyet (hükümranlık) sancakları siyah olmuştur. Ancak, Selçukluların mensup bulunduğu Kınık boyunun bayrağının siyah olmasının bu gelenekle herhangi bir ilgisi olup-olmadığını şimdilik bilemiyoruz. Fuat Köprülü, Gaznelilerin siyah bayrağı ile ilgili olarak da şunları ifade etmektedir: “Gazneli sülâlesinin şiarı, yani sembolü olarak siyah renk, eski Türklerde - hiç olmazsa bazı mühim Türk zümrelerinde - bu rengin sembolik renk olmasından mıdır, yoksa Abbasî halfeleri ile samimiyetlerinden; cihad’ı temsil etmelerinden dolayı Abbasîlerin siyah hil’at ve bayrak göndermelerinden midir? bilemiyoruz” dedikten sonra, Selçukluların da Anadolu Selçuklularının da resmî renginin siyah olduğunu ifade etmekte ve “Gaznelilerde de, Büyük Selçukluları devam ettiren Anadolu Selçukluları ile Harizmşahlarda da hükümdar sancaklarının siyah renkli oluşu, umumiyetle Selçuklu hükümdarlarının Abbasîlere manevî bağlılıklarını göstermektedir” demektedir”. Anadolu Selçuklu tarihinin yazarlarından İbn Bîbî’nin, Kâhta fethinden bahsederken kaydettiği bayrağın da siyah renkli oluşu, şüphesiz, Selçukluların bu geleneği ile ilgilidir. Yine Selçuklu geleneğine bağlı olan Salgurluların bayrağının da siyah renkli olduğu anlaşılmaktadır. Osmanlılarda ise, Asâkir-i Mansûre-i Muhammediyye birlikleri için siyah bayrak yapılmış olması, şüphesiz Hazret-i Peygamber’in siyah sancağı ile bağlı geleneğin, Selçuklulardan Osmanlılara varan bir uzantısından başka birşey değildir.


Fakat, bazı Türk devletlerindeki bu siyah renkli sancak veya bayrak olayı ile ilgili olarak şu hususu da ifade etmekte yarar vardır. Türkler, Abbasoğullarına saygı, daha doğrusu onlardan meşrûluk beratı almış olmaktan kaynaklanan saygı ve bağlılık ile ve biraz da hânedanlar arası veraset anlayışıyla, zaman zaman ve bazı yerlerde bu siyah bayrağı kullanmışlardır. Ancak, Türklerin duygulandıkları bazı renkler vardır ki (beyaz, al-kızıl, yeşil, sarı gibi), bunları hiçbir zaman bir kenara bırakmamışlar, başta al -kızıl savaş bayrağı olmak üzere, diğerlerini de yaygın olarak kullanmışlardı. Gerçekten de Türkleri kara bir bayrağın ardından veya onun altında akına, şehadete veya göçe sevkedebilmenin düşünülmesi zordu.


Alıntıdır.


Kırmızı Medrese / Cizre

 


Mardin

 


HİTİT MUTFAĞI

 Hitit dilinin çözülen ilk sözcükleri olan NINDA-an ez-za-at-te-ni WA-TAR-ra e-ku-te-ni (ekmek yiyeceksiniz su içeceksiniz) cümlesinde de olduğu gibi Hititlerde ekmek ve suyun ayrı bir önemi vardı.

Ekmek buğdayın öğütülmesiyle elde edilen undan yapılıyordu. Kazılarda, küplerin içinde bol miktarda kömürleşmiş buğday kalıntıları bulunmuştur. Ekmeği hazırlamak Hitit ailesinde kadının göreviydi. Kadınlar, kazılarda pek çok örneği bulunan taş kaplarda (DUG-NA-ARA) buğdayı ezip, un elde ediyorlardı ve ondan ekmek yapıyorlardı. Ayrıca NINDA-DU-DU olarak adlandırılan ekmekçiler ya da fırıncılar da vardı. Günümüzde evlerimizde bazı yiyecek maddelerinin ezilmesi için kullanılan havanların kökeni Hitit Çağı'ndaki bu gibi taş kaplara dayanmaktadır. Hititlerde ayrıca buğday öğütmek için değirmenler de bulunmaktaydı.

Ekmeğin çeşitleri arasında NINDA-GIBIL (taze ekmek), NINDA-KUR-RA(kalın ekmek, ince ekmek), NINDA-SIG (ince ekmek, yufka), NINDA-KU(tatlı ekmek, bir tür pasta), NINDA-I-E-DE-A (yağlı ekmek, börek), NINDA.LAL(ballı ekmek, bir tür tatlı börek), NINDA.KASKAL (yolculuk ya da yolculuk ekmeği), NINDA-ARMANI (hilal biçimli ekmek, ay çöreği).

Hitit mutfağında süt ve süt ürünlerinin yeri vardı. Süt Hitit metinlerinde GA sözcüğüyle anlatılırdı. Peynire ise GA-KIN-AG denirdi. Diğer süt ürünleri: GA-KALA-GA (koyun sütü, yoğurdu), GA-EM-SU (ekşimiş süt), GA-KU (tatlı süt).

Hititler döneminde arıcılık yapılırdı ve Hitit kanunlarında arıcılığı koruyan kurallar konulmuştur. Ballı şarap ve ballı ekmek bayramların vazgeçilmezlerindendi.

Hayvancılığın ve avcılığın gelişmiş olduğu Hititler de et yemekleri sofranın gözde yemeklerindendi. Tavşan, domuz ve koyun eti çok tüketilen yemeklerdendi.

YEMEK TARİFLERİ

Kraliçe Puduhepa usulü koyun eti (basitleştirilmiş)

1 kgkoyun kıyması, 2 narın suyu ve çekirdekleri (sevmiyorsanız çekirdekleri koymayın!), 2 yemek kaşığı kuru ekmek kırıntısı, 2 yumurta, 1/4 tatlı kaşığı biberiye, tuz ve (isteğe göre) dövülmüş sarımsak ile yoğrulur. Sonra uygun boyutta bir kalıba yerleştirilir ve üstüne iç yağ dilimleri yerleştirilir ve önceden ısıtılmış fırında 200 °C'de yaklaşık 1 saat pişirilir. Bunun yanına, buğday ekmeği (cevizli olabilir) ve sek kırmızı şarap yakışır.

Ballı Kapı Yapısı Bayramı Ekmeği

400-500 gkurutulmuş meyve (elma, armut, kayısı, erik, incir, üzüm) birkaç saat biraz beyaz şarap içinde biraz yumuşatılır. Sonra iyice süzülür ve ince kıyılır. Arta kalan su bir kenara alınır.

Oda sıcaklığında 500 gçavdar ve 250 gbuğday unu bir kaseye elenir ve ortasına bir çukur açılır. Çukurun içine 1/2 fincan ılık su ilave edip cıvık bir hamur kıvamına getirilir. Üstü kapalı bir şekilde köpürene ve kabarana kadar beklenir. (10 - 20 dakika). Yine oda sıcaklığında bir poşet sıvı ekşi hamur ilave edilir; 2 tatlı kaşığı tuz ve 1/4 tatlı kaşığı anasonla 1/4 tatlı kaşığı kişniş (her ikisi de öğütülmüş), hamura ilave edilir ve 1/4 - 1/2 litre su (meyvelerin yumuşatıldığı suyu da kullanın) katarak katı bir hamur yoğrulur ve yavaş yavaş 150 g bal ve kuru meyveler ilave edilir. Üstü kapalı olarak ılık bir yerde kabarması beklenir (normal mayalı hamurdan daha uzun sürer). Sonra bir mal mayalı hamurdan daha uzun sürer). Sonra bir daha yoğurulur ve hamur elinize yapışırsa un ilave edilir.

Fırın kağıdıyla kaplı tepsiye hamurdan hazırlanan 12 cm çapında ince lavaşlar yerleştirilir ve suya batırılmış kaşığın sırtıyla üzerin düzlenir; soyulmuş ortadan bölünmüş kıyılmış bademle her ekmeğin üstüne "Kapı/Tor" şekli verilir, hafif üstüne bastırılır. Tekrar üstüne su sürülür ve ısıtılmış fırında 220 °C'de 5 dakika, sonra 160 °C'de tekrar bir 15 dakika pişirilir. (Ekmeğe kürdan batırın, hamur bulaşmazsa pişmiş demektir.)

Ekmekler sade, ya da arası kesilip tereyağı, bal, reçel sürülerek yenilir.

 

Alıntıdır.

 

9 Mayıs 2022 Pazartesi

GÖKLERDEKİ DÜZEN

... Öyleyse maddenin ardında başka bir şey olmalıdır, bir şekilde onu kontrol eden bir şey. Ve bu, denilebilir ki, bir Yaratıcı'nın varlığının matematiksel kanıtıdır.

Guy Murchie, Amerikalı bilim yazarı


Milattan sonra 1054 yılının 4 Temmuz gecesi, Çin İmparatorluğu'nun astronomları, gökyüzünde çok dikkat çekici bir olayın gerçekleştiğini gözlemlediler. Gökyüzündeki boğa burcunun yakınlarında, aniden çok parlak bir yıldız ortaya çıktı. Yıldız o kadar parlaktı ki, ışığı gündüzleri bile kolaylıkla farkedilebiliyor, gece ise neredeyse Ay'dan daha parlak görünüyordu. 

Çinli astronomların gördükleri ve kaydettikleri bu olay, evrendeki en ilginç astronomik oluşumlardan biriydi aslında. Bu bir "süpernova"ydı. 

Süpernova deyimi, astronomlar tarafından bir yıldızın patlayarak dağılmasını isimlendirmek için kullanılır. Dev bir yıldız, korkunç bir patlama ile kendisini yok eder ve içindeki madde de yine korkunç bir hızla dört bir yana dağılır. Bu patlama sırasında yayılan ışık, yıldızın normal ışımasından binlerce kat daha kuvvetlidir. 

Astronomlar süpernovaların evrenin oluşumunda çok önemli bir rol oynadığını düşünürler. Bu patlamalar, astronomların tahminine göre, maddenin evrende bir noktadan başka noktalara taşınması işine yarar. Patlama sonucunda dağılan yıldız artıklarının, evrenin başka köşelerinde birikerek yeniden yıldızlar ya da yıldız sistemleri oluşturduğu varsayılmaktadır. Bu varsayıma göre, Güneş, Güneş Sistemi içindeki gezegenler ve bu arada elbette bizim Dünyamız da, çok eski zamanlarda gerçekleşmiş bir süpernova patlamasının sonucunda ortaya çıkmıştır. 

Ancak işin ilginç yanı, ilk bakışta basit birer patlama gibi durabilecek olan süpernovaların, gerçekte çok hassas bazı dengeler üzerine kurulmuş olmalarıdır. Michael Denton, Nature's Destiny (Doğanın Kaderi) adlı kitabında şöyle yazar:

Süpernovalar ve aslında bütün yıldızlar arasındaki mesafeler çok kritik bir konudur. Galaksimizde yıldızların birbirlerine ortalama uzaklıkları 30 milyon mildir. Eğer bu mesafe biraz daha az olsaydı, gezegenlerin yörüngeleri istikrarsız hale gelirdi. Eğer biraz daha fazla olsaydı, bir süpernova tarafından dağıtılan madde o kadar dağınık hale gelecekti ki, bizimkine benzer gezegen sistemleri büyük olasılıkla asla oluşamayacaktı. Eğer evren yaşam için uygun bir mekan olacaksa, süpernova patlamaları çok belirli bir oranda gerçekleşmeli ve bu patlamalar ile diğer tüm yıldızlar arasındaki uzaklık, çok belirli bir uzaklık olmalıdır. Bu uzaklık, şu an zaten var olan uzaklıktır.

Süpernovaların oranları ve yıldızların mesafeleri, aslında evrenin sahip olduğu büyük düzenin çok küçük iki ayrıntısıdır. Evreni biraz daha detaylı olarak incelediğimizde ise, karşılaştığımız düzen olağanüstüdür.


 

Boşluklar Niçin Var?


Big Bang'den sonra ortaya çıkan evren, öncelikle sadece hidrojen ve helyumdan ibaret bir gaz yığını olmuş, sonra ise bu gaz yığını, özellikle tasarlanmış olduğu açık olan nükleer reaksiyonlarla daha ağır elementleri meydana getirmiştir. Ama evrenin yaşam için uygun bir yer haline dönüşmesi, sadece ağır elementlerin varlığıyla mümkün olmaz. Bundan da önemli olan bir nokta, evrenin nasıl bir şekil ve düzen aldığıdır. 

Bu incelemeye, önce evrenin ne kadar büyük olduğuna bakarak başlayalım. 

Dünya gezegeni, bildiğimiz gibi Güneş Sistemi'nin bir parçasıdır. Bu sistem, evrenin içindeki diğer yıldızlara göre orta-küçük bir yıldız olan Güneş'in etrafında dönmekte olan dokuz gezegenden ve onların elli dört uydusundan oluşur. Dünya, sistemde Güneş'e en yakın üçüncü gezegendir. 

Önce bu sistemin büyüklüğünü kavramaya çalışalım. Güneş'in çapı, Dünya'nın çapının 103 katı kadardır. Bunu bir benzetmeyle açıklayalım; eğer çapı 12.200 km. olan Dünya'yı bir misket büyüklüğüne getirirsek, Güneş de bildiğimiz futbol toplarının iki katı kadar büyüklükte yuvarlak bir küre haline gelir. Ama asıl ilginç olan, aradaki mesafedir. Gerçeklere uygun bir model kurmamız için, misket büyüklüğündeki Dünya ile top büyüklüğündeki Güneş'in arasını yaklaşık 280 metre yapmamız gerekir. Güneş Sistemi'nin en dışında bulunan gezegenleri ise kilometrelerce öteye taşımamız gerekecektir.

Ancak bu kadar dev bir boyuta sahip olan Güneş Sistemi, içinde bulunduğu Samanyolu galaksisine oranla oldukça mütevazidir. Çünkü Samanyolu galaksisinin içinde, Güneş gibi ve çoğu ondan daha büyük olmak üzere yaklaşık 250 milyar yıldız vardır. Bu yıldızların içinde Güneş'e en yakın olanı Alpha Centauri'dir. Eğer Alpha Centauri'yi az önce yaptığımız ölçeğe, yani Dünya'nın misket büyüklüğünde olduğu ve Güneş ile Dünya'nın arasının 280 metre tuttuğu ölçeğe  yerleştirirsek, onu Güneş'in 78 bin kilometre uzağına koymamız gerekir!

Modeli biraz daha küçültelim. Dünya'yı gözle zor görülen bir toz zerresi kadar yapalım. O zaman Güneş ceviz büyüklüğünde olacak ve Dünya'ya üç metre mesafede yer alacaktır. Bu ölçek içinde Alpha Centauri'yi ise Güneş'ten 640 kilometre uzağa koymamız gerekir. 

Samanyolu galaksisi, işte aralarında bu denli inanılmaz mesafeler bulunan 250 milyar yıldızı barındırır. Spiral şeklindeki bu galaksinin kollarının birisinde, bizim Güneşimiz yer almaktadır.

Ancak ilginç olan, Samanyolu galaksisinin de uzayın geneli düşünüldüğünde çok "küçük" bir yer oluşudur. Çünkü uzayda başka galaksiler de vardır, hem de tahminlere göre, yaklaşık 300 milyar kadar!... Bu galaksilerin arasındaki boşluklar ise, Güneş ile Alpha Centauri arasındaki boşluğun milyonlarca katı kadardır. 

George Greenstein, bu akıl almaz büyüklükle ilgili, The Symbiotic Universe (Simbiyotik Evren) adlı kitabında şöyle yazar:

Eğer yıldızlar birbirlerine biraz daha yakın olsalar, astrofizik çok da farklı olmazdı. Yıldızlarda, nebulalarda ve diğer gök cisimlerinde süregiden temel fiziksel işlemlerde hiçbir değişim gerçekleşmezdi. Uzak bir noktadan bakıldığında, galaksimizin görünüşü de şimdikiyle aynı olurdu. Tek fark, gece çimler üzerine uzanıp da izlediğim gökyüzünde çok daha fazla sayıda yıldız bulunması olurdu. Ama pardon, evet; bir fark daha olurdu: Bu manzarayı seyredecek olan "ben" olmazdım... Uzaydaki bu devasa boşluk, bizim varlığımızın bir ön şartıdır.

Greenstein, bunun nedenini de açıklar; uzaydaki büyük boşluklar, bazı fiziksel değişkenlerin tam insan yaşamına uygun biçimde şekillenmesini sağlamaktadır. Ayrıca Dünya'nın, uzay boşluğunda gezinen dev gök cisimleriyle çarpışmasını engelleyen etken de, evrendeki gök cisimlerinin arasının bu denli büyük boşluklarla dolu oluşudur. 



Entropi ve Düzenlilik


Evrendeki düzenin anlamını kavramak için, öncelikle evrenin en temel fizik yasalarından biri olan, Termodinamiğin İkinci Kanunu'ndan söz etmek gerekir.

Termodinamiğin İkinci Kanunu, evrende kendi haline, doğal şartlara bırakılan tüm sistemlerin, zamanla doğru orantılı olarak düzensizliğe, dağınıklığa ve bozulmaya doğru gideceğini söyler. Aynı gerçek "Entropi Kanunu" olarak da ifade edilir. Entropi, fizikte bir sistemin içerdiği düzensizliğin ölçüsüdür. Bir sistemin düzenli, organize ve planlı bir yapıdan düzensiz, dağınık ve plansız bir hale geçmesi o sistemin entropisini artırır. Bir sistemdeki düzensizlik ne kadar fazlaysa, o sistemin entropisi de o kadar yüksek demektir. 

Bu gerçek hepimizin yaşamları sırasında da yakından gözlemlediği bir durumdur. Örneğin bir arabayı çöle götürüp bırakır ve aylar sonra durumunu kontrol ederseniz, elbette ki onun eskisinden daha gelişmiş, daha bakımlı bir hale gelmesini bekleyemezsiniz. Aksine lastiklerinin patlamış, camlarının kırılmış, kaportasının paslanmış, motorunun çürümüş olduğunu görürsünüz. Ya da evinizi "kendi haline" bırakırsanız, her geçen gün daha düzensizleştiğini, dağıldığını, tozlandığını görürsünüz. Ancak bilinçli bir müdahale ile (yani evi temizleyip düzenleyerek) bu süreci geriye çevirebilirsiniz.

Termodinamiğin İkinci Kanunu ya da diğer adıyla Entropi Kanunu, doğruluğu teorik ve deneysel olarak kesin biçimde kanıtlanmış bir kanundur. Öyle ki yüzyılımızın en büyük bilimadamı kabul edilen Albert Einstein, bu kanunu "bütün bilimlerin birinci kanunu" olarak tanımlamıştır. Amerikalı bilimadamı Jeremy Rifkin, Entropy: A New World View (Entropi: Yeni Bir Dünya Görüşü) adlı kitabında şöyle der:

Entropi Kanunu, tarihin bundan sonraki ikinci devresinde, hükmedici düzen şeklinde kendini gösterecektir. Albert Einstein, bu kanunun bütün bilimlerin birinci kanunu olduğunu söylemiştir; Sir Arthur Eddington ondan, bütün evrenin en üstün metafizik kanunu olarak bahseder. 

İşin ilginç yanı ise, entropi kanununun, evrenin her türlü doğaüstü müdahaleye kapalı bir madde yığını olduğunu iddia eden materyalizmi kesin biçimde geçersiz kılmasıdır. Çünkü evrende çok belirgin bir düzen vardır, ama evrenin kendi kanunları bu düzeni bozmaya yöneliktir. Bundan iki sonuç çıkmaktadır:

1) Evren materyalistlerin iddia ettiği gibi sonsuzdan beri var olamaz. Çünkü eğer böyle olsa, Termodinamiğin İkinci Kanunu, şimdiye kadar çoktan evrendeki entropiyi maksimum düzeye çıkarmış olurdu ve evren, hiçbir düzene sahip olmayan tekdüze (homojen) bir madde yığını haline gelirdi.

2) Big Bang'in ardından evrenin hiçbir doğaüstü müdahale ve kontrol olmadan şekillendiği iddiası da geçersizdir. Çünkü Big Bang'in ardından ortaya çıkan evren, sadece düzensizliğin hüküm sürdüğü bir evrendir. Ama bu evrende giderek düzenlilik artmış ve evren bugünkü düzenli yapısına kavuşmuştur. Bu, doğa kanunlarına (entropi yasasına) aykırı bir biçimde gerçekleştiğine göre, demek ki evren doğaüstü bir yaratılışla düzenlenmiştir.

Bu ikinci maddeyi bir örnekle açıklayalım. Evreni, içinde yığınla taşlar ve kayalar olan dev bir mağara olarak düşünelim. Bu mağarayı doğal şartlara bırakır ve milyarlarca yıl beklerseniz, ilk halinden bile daha düzensizleştiğini (taşların ufalandığını, birbirleriyle karışıp tekdüze ve şekilsiz bir yapı haline geldiklerini) görürsünüz. Ama eğer milyarlarca yıl sonra mağaranın içinde bu taşlardan yapılmış ve ince ince işlenmiş heykeller bulursanız, bu düzenliliğin doğa kanunları ile açıklanamayacağına hemen karar verirsiniz. Yapılabilecek tek açıklama, bu mağaranın bir "akıl" tarafından düzenlenmiş olduğudur.

İşte evrende hüküm süren düzen de, bizlere evrene hakim olan üstün bir Aklın varlığını gösterir. Nobel ödüllü ünlü Alman fizikçi Max Planck, evrendeki bu düzeni şöyle açıklar:

Özetlemek gerekirse, pozitif bilimler tarafından doğanın dev yapısı hakkında bize öğretilen her şey, kesin bir düzenin hüküm sürdüğünü göstermektedir—bu insan zihninden bağımsız bir düzendir. Algılarımızla tanımlayabildiğimiz kadarıyla, bu düzen ancak amaçlı bir düzenleme sayesinde ortaya çıkmış olabilir. Dolayısıyla evrenin bilinçli bir düzene sahip olduğuna dair açık kanıt vardır.

Evrenin sonsuzdan beri var olduğunu ve hiçbir biçimde düzenlenmediğini savunan materyalizm, evrendeki büyük denge ve düzen karşısında büyük bir açmazdadır. Paul Davies, bunu şöyle ifade eder:

Evrende nereye bakarsak bakalım, en uzaktaki galaksilerden atomun derinliklerine kadar, bir düzenle karşılaşırız... Bu düzenli, özel evrenin merkezinde "bilgi" kavramı yatmaktadır. Yüksek derecede özelleşmiş olan ve organize edilmiş bir düzenleme sergileyen bir sistem, tarif edilebilmek için çok yoğun bir bilgi gerektirir. Ya da bir başka deyişle bu sistem yoğun bir "bilgi" içermektedir...

Bu durumda çok merak uyandırıcı bir soru ile karşı karşıya geliriz. Eğer bilgi ve düzen, sürekli olarak yok olmaya yönelik doğal bir eğilime sahiplerse, Dünya'yı çok özel bir yer kılan bütün o bilgi ilk başta nereden gelmiştir? Evren, zembereği yavaş yavaş boşalan bir saate benzemektedir. Öyleyse ilk başta nasıl kurulmuştur? 

Einstein ise, evrendeki söz konusu düzenin "beklenmedik" bir şey olduğunu ve aslında bir "mucize" sayılması gerektiğini şöyle açıklamıştır:

Açıkçası, a priori (önkabul) olarak, Dünya'nın, ancak bizim onu düzenleyici aklımızla düzenlediğimiz takdirde kanunlu (düzenli) hale gelebileceğini beklememiz gerekir. Bu, bir lisandaki kelimelerin alfabetik dizilimi gibi bir düzen olacaktır... Ama maddesel Dünya'da, a priori olarak beklemememiz gereken çok yüksek seviyede bir düzen vardır. Bu bir "mucize"dir ve bilgimizin gelişmesine paralel olarak daha da güçlenmektedir.



Güneş Sistemi


Evrendeki düzenliliği en açık olarak gözlemlediğimiz alanlardan biri de, Dünyamızın içinde bulunduğu Güneş Sistemi'dir. Güneş Sistemi'nde 9 ayrı gezegen ve bu gezegenlere bağlı 54 ayrı uydu yer alır. Bu gezegenler, Güneş'e olan yakınlıklarına göre; Merkür, Venüs, Dünya, Mars, Jüpiter, Satürn, Neptün, Uranüs ve Pluton'dur. Bu gezegenlerin ve 54 uydularının içinde yaşama uygun bir yüzey ve atmosfere sahip olan yegane gök cismi ise Dünya'dır. 

Güneş Sistemi'nin yapısını incelediğimizde, yine büyük bir denge ile karşılaşırız. Gezegenleri dondurucu soğukluktaki dış uzaya savrulmaktan koruyan etki, Güneş'in "çekim gücü" ile gezegenin "merkez-kaç kuvveti" arasındaki dengedir. Güneş sahip olduğu büyük çekim gücü nedeniyle tüm gezegenleri çeker, onlar da dönmelerinin verdiği merkez-kaç kuvveti sayesinde bu çekimden kurtulurlar. Ama eğer gezegenlerin dönüş hızları biraz daha yavaş olsaydı, o zaman bu gezegenler hızla Güneş'e doğru çekilirler ve sonunda Güneş tarafından büyük bir patlamayla yutulurlardı. 

Bunun tersi de mümkündür. Eğer gezegenler daha hızlı dönseler, bu sefer de Güneş'in gücü onları tutmaya yetmeyecek ve gezegenler dış uzaya savrulacaklardı. Oysa çok hassas olan bu denge kurulmuştur ve sistem bu dengeyi koruduğu için devam etmektedir.

Bu arada söz konusu dengenin her gezegen için ayrı ayrı kurulmuş olduğuna da dikkat etmek gerekir. Çünkü gezegenlerin Güneş'e olan uzaklıkları çok farklıdır. Dahası, kütleleri çok farklıdır. Bu nedenle, hepsi için ayrı dönüş hızlarının belirlenmesi lazımdır ki, Güneş'e yapışmaktan ya da Güneş'ten uzaklaşıp uzaya savrulmaktan kurtulsunlar. 


Dünya'nın Yeri


Son astronomik bulgular, sistemdeki diğer gezegenlerin varlığının, Dünya'nın güvenliği ve yörüngesi için büyük önem taşıdığını göstermiştir. Jüpiter'in konumu buna bir örnektir. Güneş Sistemi'nin en büyük gezegeni olan Jüpiter, varlığıyla aslında Dünya'nın dengesini sağlamaktadır. Astrofizik hesaplamalar, Jüpiter'in bulunduğu yörüngedeki varlığının, sistemdeki Dünya gibi diğer gezegenlerin yörüngelerinin istikrarlı olmasını sağladığını ortaya çıkarmıştır. Jüpiter'in Dünya'yı koruyucu ikinci bir işlevini ise, gezegen bilimci George Wetherill "Jüpiter Ne Kadar Özel" adlı bir makalede şöyle açıklar:

Jüpiter'in bulunduğu yerde eğer bu büyüklükte bir gezegen var olmasaydı, Dünya, gezegenler arası boşlukta gezinen meteorlara ve kuyrukluyıldızlara yaklaşık bin kat daha fazla hedef olurdu... Eğer Jüpiter olduğu yerde olmasaydı, şu anda biz de Güneş Sistemi'nin kökenini araştırmak için var olamazdık.


Alıntıdır.


Mem U Zin / Cizre

 


Siyahkaya Barajı / Silopi / Şırnak